
The “Crazy” Future in
Software Innovation

Prof. Stelian Brad
stelian.brad@staff.utcluj.ro

Somebody said “the world was happy when C was
only a letter in the alphabet, Ruby was only a stone,
Java was only an island, Python was only a snake, …”

Innovation … a nonlinear, multiple-looped and agile process
through which a novel idea is generated and then embedded
into an elaborated viable solution that addresses a need of a
given target group in a way that fits the group’s culture; thus,
being wanted, affordable, valued-for-money and adopted

As the number of
entities increases, the
number of
interactions between
them would
exponentially
increase; and it would
get to a point where
it would be
impossible to know
and understand all of
them

Higher levels of
complexity in
software increase the
risk of unintentionally
interfering with
interactions and so
increases the chance
of introducing defects
when making
changes

In more extreme
cases, complexity can
make modifying the
software virtually
impossible

More and more
platforms;
platforms “nested”
into platforms; high
cost of multiple
platforms

What about system
maintenance?

Which is the best
practice in this
context?

“craziness”

e
complexity

abundance

complicatedness
dynamicity

entropy → a state of disorder, uncertainty, randomness in the system | level of possible combinations of the parts in the system

equipotentiality → apparent capacity of any intact part of the system to carry out functions which are lost by the destructed parts

equilibrium → state of balance relative to the forces acting in the system !

a state of being in perpetual change, which
makes dataset difficult to keep accurate

a state of oversufficient quantity, thanks to
technology (e.g. abundance in communications)

a system with intricately combined
and involved parts → very difficult
to understand or analyze

the behavior at the layer between deterministic and
chaos, with high nonlinearity, where small changes in
the value of some parameters lead to radical
unexpected evolutions

low predictability and high uncertainty
in software innovation

platform battlefield

architecting “systems-of-systems” & team coding by “lego”ing

very tight space for strategic and operational errors

very short time to keep a competitive advantage with a new innovation

difficult to generate clear differentiation

winner takes all

software paradox(es)

technical paradox ::
technologies have tremendously multiplied and diversified in order to increase
productivity and agility in software production but
the job of professionals was not simplified [by contrary, it looks like a
nightmare]

economic paradox ::
strategic importance of software is tremendously growing but
software monetization on a stand-alone basis is more and more difficult

[problematic]
reality

software & business
sustainability

challenge

generic actions … systematic problem resolution

prior
arrangements to

go fast into action
when required

asymmetrical
systems (not
asymmetrical

software)

reconfigurable
constructions

systems with
automatic

interchangeable
parts

technical

business

What and
how?

What and
how?

What and
how?

What and
how?

What and
how?

What and
how?

What and
how?

What and
how?

See the growing popularity of Python or ROS (Robot Operating System) – huge libraries

See asymmetric multiprocessing, customized processors for AI

See reconfigurable computing for FPGAs
Standardized components in software

See holonic teams

See networks of fast-activated experts

See open source and open innovation

See polycentric innovation

… and the 5 fundamental rules

Rule #1: Look for strong “stickers” to better
understand patterns and lines of evolution

from IT product systems to IT
product-service systems

develop sustainable IT product-
service strategies in strong

symbiosis with the key
influencing factors

Rule #2: innovate by “breaking” not by
incrementing

beyond agile … resilient software development multiple levels of abstraction

focus on RAD frameworks unified apps on a single PaaS automated support

co-evolution, traceability and synchronization between all artefacts of the system

dynamic software adaptation

hybrid backend technologies

design for life-cycle … UX & DX

business models beyond the comfort zone :: sell system integration, deployment, support and software derivatives

sell also expertise and content, not only software

hybrid businesses :: create a strong customer lock-in & sell services around free platforms

highly customized pricing offer to maximize value for each customer

focus on lean innovation

technical breakthrough :: a bunch of actions, not only one

business breakthrough :: a bunch of actions, not only one

Rule #3: Adopt “reverse” thinking paradigms

dynamics is becoming too high … do not speed-up, focus on capacities for inventive approaching of crises

compete on strategic positioning not on operational effectiveness … do things to deliver unique value

think in terms of deviation from ideality :: in an ideal architecture/design the system complexity is minimized

more pivoting
concurrent development

lean prototyping

discard and recover teams
back-up functions
contingency plans

strategic alliances
collaborative networks

holonic organization

DYNAMICS is higher-and-higher [we cannot control it in a world where consumers dictate the speed]

How to increase CAPACITY?How to increase RELIABILITY?How to reduce COMPLEXITY?

Rule #4: Understand the laws that govern
software evolution

behavioural laws

technical laws

1. continuous change

2. increase complexity

8. feedback loop 7. declining quality

3. self-regulation 4. conserve stability 5. conserve familiarity

6. continuous growth

1. independent sub-systems

2. consolidation into a super-system

3. development of specialized systems 4. complete reconstruction of the system 5. transition to new principles

6. from an open system to a closed system

7. transition to higher-systems8. intelligent and higher autonomous system

Rule #5: Focus on robustness to
fuel agility and resilience

Long termMedium termShort term

plan short-term
actions and

results

plan short-term
actions and

results

plan short-term
actions and

results

act nonlinear act nonlinear act nonlinear

innovate innovate innovate

create evolutionary resources create evolutionary resources create evolutionary resources

prepare to control the crisis prepare to control the crisis prepare to control the crisis

unpredictability requires higher productivity and agility

think in terms of multiple futures and invest in robustness

crisis crisis crisis

from “innovation 1.0” to “innovation 4.0”

Complexity

Time‘30 ’80 ‘90 ‘00 ‘10

Innovation 1.0
Closed Innovation [Internal & Centralized]

Innovation 2.0
Open Innovation [Cooperation & Collaboration]

Innovation 3.0
Shared Innovation [Polycentric & Cluster]

Innovation 4.0
Networked Innovation [Open
Platforms. Cross-Clusters &

Open Eco-Systems]

The Era of Providers

The Era of Consumers

Expansion

Modernization

Transformation

Take-off

future in software innovation …

… culture of polycentric agile strategic alliances

evolution stands in cooperation, not in competition

(Brad, S)

Complexity and criticality of the ecosystem [e.g.
scarcity of resources, hostile environment,
stronger competition, evolution of adopters]

Evolution

Competition
[Darwinian law of evolution]

Tipping
point

transition
Increasing the level of competition

evolution

a new age of evolution

Cooperation
[Epigenetic law of evolution]

Co-opetition

involution

What about this?

Prisoner’s dilemma
Traveler’s dilemma
Nash equilibrium

Without cooperation, competition
leads to sub-optimal solutions

See also the theory of correlated equilibrium of Robert Auman
(Maximize the Minimum Gain)



With cooperation in a framework of maximizing performance, we can achieve
a fair and efficient solution by maximizing the Utility Product (John Nash)

Adam Smith – free competition leads to best possible results
→ but with what lost of energy from those who loose; and
with what lost for all people, since the energy lost would be
directed to some other constructive areas for all; and is truly
a free market and a free competition?

Cooperation is played on rules, too. This is a space to be further explored …

Small S-cycle in
the large S-cycle

segmentation

reduction of complexity

mono

bi

poly

time

Technical innovation
is a discontinuous
jump towards ideality

example

Windows 1.0 | 1985

Windows 2.0 /2.1X | 1987

Windows 3.0 /3.1 NT | 1990

Windows 95 | 1995

Windows 98 / 98 SE | 1998

Windows 2000 | 2000

Windows XP | 2001

Windows VISTA | 2005

Windows 7 | 2009 →Windows 8 | 2012

Windows 10 | 2015 → 9 versions

Microsoft announced that
Windows 10 is the last major
series of OS they will develop

Number of innovations in the system

Impact of innovations in the market

Evolution of technical systems did not follow the
same path as the evolution of innovations (value
perceived by the market) and the evolution of the
business behind the technical system (profitability)

Impact of system performance in the market is not
related to the level of inventiveness, but with respect
to the capacity of the users (market) to use that
performance to bring value added to their interest

Competition, and market capability to adopt
innovations (related to business sustainability)
generate a top barrier in technical systems evolution

conclusion is yours …

To watch this video clip from a pdf file, click here

https://youtu.be/qMMxYKLkNeU

